Working Together for Clean Water

9TH NATIONAL MONITORING CONFERENCE

April 28 – May 2, 2014

Cincinnati, Ohio

A high quality cellphonebased portable microscope for streamside data collection

Steven J. Steinberg, Ph.D., GISP

Principal Scientist - Information Management & Analysis Southern California Coastal Water Research Project

Presentation overview

- Background on SCCWRP
- How this fits into our research direction
- Algae Case study
- Next steps / Future Development

SCCWRP background

- A Joint Powers Agency (JPA) founded in 1969
 - Formed by several government agencies with a common mission that can be better addressed by pooling knowledge and resources
- Address regional monitoring and research needs
 - Cumulative impact assessment
 - Methods development
 - Data integration
- Members include city, county, state, and federal agencies
 - A unique combination of regulators and dischargers

Member organizations

Regulators

- San Diego Regional Water Quality Board
- Santa Ana Regional Water Quality Board
- Los Angeles Regional Water Quality Board
- California State Water Resources Control Board
- U.S. Environmental Protection Agency (Region IX)
- California Ocean Protection Council

Regulated

- City of Los Angeles
- Los Angeles County Sanitation Districts
- Orange County Sanitation District
- City of San Diego Public Utilities Department
- Ventura County Watershed Protection District
- Los Angeles County Flood Control District
- Orange County Public Works
- County of San Diego

Internal Structure

- 44 full-time staff
 - About 40% hold PhDs
 - An additional 30% hold Master's degrees
- Five departments
 - Biogeochemistry
 - Biology
 - Chemistry
 - Information Management & Analysis
 - Toxicology
 - Microbiology

SCCWRP as a unique interface

- We are not the only organization exploring development of these sorts of technologies
- We ARE one of the few that can connect all aspects (science, technology and user applications)

Opportunity for in-field microscopy

- SCCWRP is a leader in developing methods and indices for biological assessment approaches for quantification of environmental impacts
- These provide a foundation for establishment of regulatory biological criteria
- California is on the cusp of adopting biocriteria as a means of water quality monitoring using a number of biological indicators:
 - Algae
 - Diatoms
 - Benthic invertebrates

Cell phone microscopes:

 Development has focused on mobile medical imaging and telemedicine applications

 We are working with CellScope developers to apply these technologies to environmental

analysis

Why start with algae?

- Provides for field fresh images without preservation or degradation of specimens
- Identification of algae is not as far along as some other areas (greater need)
- Image catalogs for algae are already developed
 - SCCWRP is a world leader helping to develop a web-library for identification of soft-bodied algae in Southern California.

Evaluating the original CellScope for application in phycological studies

lowa Lakeside Lab

Example of a specimen with one type of mount

(standard microscope slides also work)

Sedgewick-Rafter counting cell (accommodates bulky samples)

Oblique illumination

Overhead illumination

Gloeotrichia – 40x

Comparing field scope with laboratory scope

iPhone Field Scope zoomed in Leica Lab Scope

Comparing field scope with laboratory scope

Leica Lab Scope

iPhone Field Scope

Ulothrix, Diatoma vulgaris — 200x

Comparing field scope with laboratory scope

Leica Lab scope – 400 x

iPhone Field scope – 200 x (and digitally zoomed)

Different lighting strategies offer different perspectives

Overhead \rightarrow better detail of fine, superficial features

Oblique → better concept of 3-D structure

Hydrodyction – 40x

Cell phone movie capability is useful for identifying motile taxa

Euglenoids

Pros

- Highly portable (light, small) easy to use
- Can assess specimens directly in field without need for preservation
 - avoids transporting/handling of toxic substances
 - Avoids deforming/distorting important diagnostic features, such as fine structural details and pigment color, by fixative (or rotting/fungal infestation of unfixed sample)
 - Recording video of live specimens in motion. Useful for IDs (e.g., Euglenoids)
- Variable lighting options afford different types of imaging

Chara - 40x — in Sedgewick-Rafter cell with oblique illumination — iPhone Field Scope

Cons

- Images not as crisp as on lab scope; more washed-out (due in part to more diffuse lighting?)
- Very difficult to make fine adjustments to the positioning of microscope slide, especially at high power (> 40x)
- No built-in means for measuring specimen dimensions

Nostoc - 200x — iPhone Field Scope

Improving on the CellScope

- Improved/mechanical control of stage
- Better lighting control
- Android and iPhone support
- Embedded scale bar (or software scale bar)
- Field-friendly configuration (e.g. enclosed stage)
- Improved 3-D imaging?

CellScope updates (SCCWRP model)

- X-Y slide translation mechanism
- Magnetic stops on the light source for defined illumination positions
- Tripod mount
- Enclosure for sample to permit darkfield in bright conditions
- Mounts for Nexus 4 and 5 and iPhone 5

What next?

- There is significant interest in potential applications for the CellScope
 - Regional and Statewide monitoring programs
 - A tool for use by Citizen Scientists
 - Incorporation into developing methods and protocols for bioassessment

What next?

- Integrate images with mobile field apps for comprehensive data collection
 - Does this sample make sense (given location/other data collected at the site)?
 - Should samples be brought back to lab?

What next? (Real-time: the "dream" solution)

- Tie back to existing image libraries and/or image analysis for in field ID
 - Provide an "expert system" to the user in the field
- Integrate records with field and sensor data
 - Link to calculation of indices used to provide site scores for bioassessment

Moving CellScope forward

- A new application (environmental monitoring) and interested user community
 - Scientists who are knowledgeable in the biology, methods and technology to link these tools to realworld applications
 - Access to and trust of key players (agencies, scientists, educators) at the state and National levels
- Ability to assist in development/testing in a new application area

Thank You Questions?

Steven J. Steinberg, Ph.D., GISP

Principal Scientist - Information Management & Analysis Southern California Coastal Water Research Project

steves@sccwrp.org

714-755-3260

www.sccwrp.org

